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Abstract: Foundation impedance ordinates are identified from forced vibration tests conducted on a large-scale model test structure in
Garner Valley, California. The structure is a steel moment frame with removable cross-bracing, a reinforced concrete roof, and a nonem-
bedded square slab resting on Holocene silty sands. Low-amplitude vibration is applied across the frequency range of 5–15 Hz with a uniaxial
shaker mounted on the roof slab. We describe procedures for calculating frequency-dependent foundation stiffness and damping for hori-
zontal translational and rotational vibration modes. We apply the procedures to test data obtained with the structure in its braced and unbraced
configurations. Experimental stiffness ordinates exhibit negligible frequency dependence in translation but significant reductions with
frequency in rotation. Damping increases strongly with frequency, is stronger in translation than in rocking, and demonstrates
contributions from both radiation and hysteretic sources. The impedance ordinates are generally consistent with numerical models for a
surface foundation on a half-space, providing that soil moduli are modestly increased from free-field values to account for structural weight,
and hysteretic soil damping is considered. DOI: 10.1061/(ASCE)GT.1943-5606.0000430. © 2011 American Society of Civil Engineers.
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Introduction

Impedance functions represent the frequency-dependent stiffness
and damping characteristics of foundation-soil interaction. A syn-
thesis of available numerical solutions for impedance functions
is given by Gazetas (1991). Those solutions generally utilize
assumptions of foundation rigidity and uniform soil of infinite
depth with a fixed hysteretic damping ratio. Under these conditions,
the soil profile is referred to as a viscoelastic half-space. Additional
formulations are available to account for a specified depth-variable
shear stiffness (Gazetas 1991; Vrettos 1999), foundation embed-
ment (e.g., Apsel and Luco 1987), and nonrigid foundations
(e.g., Iguchi and Luco 1982). This paper is concerned with the
experimental evaluation of impedance functions with forced vibra-
tion testing of structures in the field. Experimental verification of
numerical impedance function solutions is essential to understand-
ing their reliability and applicability to relatively complex field
conditions.

In the following two sections, we review the mathematical def-
inition of impedance functions and summarize previous experimen-
tal investigations of frequency-dependent foundation stiffness
and damping, which places the contribution of the present work
in context. We then describe forced vibration tests carried out

on a large-scale model test structure in Garner Valley, California,
and the evaluation of impedance ordinates from the data. The
Garner Valley structure is unique in that it can be configured at
two distinct levels of structural stiffness—effectively enabling
the evaluation of impedance ordinates for two different structures
resting on the same soil profile. Testing is performed at low force
levels so the structure and soil remain in the elastic range. We con-
clude by comparing the experimental results with the predictions of
numerical models and by discussing the misfits that are identified.

Theoretical Model for Impedance of a Rectangular
Foundation

Impedance functions represent the stiffness and damping character-
istics of foundation-soil interaction under cyclic loads. For exam-
ple, classical solutions for the complex-valued impedance function
(Veletsos and Wei 1971; Gazetas 1991) can be written as

�kj ¼ kj þ iωcj ð1a Þ
where �kj = complex-valued impedance function; subscript j = index
denoting modes of translational displacement or rotation; kj and
cj = foundation stiffness and damping, respectively, for mode j;
and ω ¼ angular frequency ðrad=sÞ. An alternative form for
Eq. (1a) is

�kj ¼ kjð1þ 2iβjÞ ð1b Þ
where

βj ¼
ωcj
2kj

ð2Þ

An advantage of using βj over cj is that at resonance of the
soil-foundation-structure system, the former is interpreted as a
percentage of critical damping in the classical sense (Clough
and Penzien 1993).

For a rigid rectangular foundation [geometry depicted in
Fig. 1(a)] resting on the surface of a half-space with shear wave
velocity Vs, Pais and Kausel (1988) review impedance solutions
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in the literature and present fitting equations for the stiffness and
damping terms from Eq. (1a). Referring to Fig. 1(a), the solutions
describe translational stiffness along axes x, y, and z, and stiffness
against rotation around those axes (denoted xx, yy, and zz). Damp-
ing solutions are also provided. Stiffness kj is proportional to the
static foundation stiffness for mode j, denoted Kj, which in turn
depends on soil shear modulus G, foundation dimensions, and soil
Poisson’s ratio (ν)

kj ¼ Kj × αj ð3a Þ

where

Kj ¼ GBmf ðB=L; νÞ; αj ¼αjðB=L; a0Þ ð3b Þ

and m ¼ 1 for translation and m ¼ 3 for rotation. The αj terms are
dynamic modifiers of the static stiffness depending on dimension-
less frequency a0

a0 ¼
ωB
Vs

ð4Þ

Fig. 1(b) shows analytical solutions for stiffness dynamic modifiers
(α terms) whereas Fig. 1(c) shows damping dynamic modifiers
(β terms) neglecting the hysteretic component. Solutions are shown
both for a uniform half-space (by using the approximate formulas
of Pais and Kausel 1988) and a nonuniform media (Vrettos 1999).

For translational modes, stiffness modifiers ðαx;αyÞ are nearly
frequency-independent, indicating that the real part of the
translational impedance function [Eq. (1a)] is also frequency-
independent. Damping terms for translation ðβx;βyÞ increase
linearly with frequency. Rotational modes show more frequency-
dependent stiffness modifiers and nonlinear variations of damping
with frequency. Fig. 1(b) shows that rotational stiffness terms are
not significantly affected by soil nonuniformity, whereas Fig. 1(c)
shows that damping is reduced.

It is common in engineering practice to neglect the αj terms
(ASCE 2006) and to indirectly account for dashpots cj by using
a foundation system viscous damping ratio βf (BSSC 2009; ASCE
2006). Hence, ASCE (2006) guidelines provide equations for static
stiffness (which are adapted from Pais and Kausel 1988) but do not
discuss dashpots or dynamic modifiers for stiffness. The rationale
for ignoring dynamic stiffness modifiers is because they are close
to 1 for the low frequencies typically of interest for building struc-
tures, although this has been questioned for rotational stiffness
(Stewart et al. 2003). In this paper, we examine the full, frequency-
dependent foundation stiffness (and damping), which provides

insight into the degree to which this common simplifying
assumption is reasonable for realistic field conditions.

Previous Experimental Evaluations of Impedance
Ordinates

Experimental investigations of impedance functions typically seek
to evaluate stiffness and damping terms for horizontal translation
( j ¼ x or y) and rotation within the vertical plane ( j ¼ xx or yy).
Cyclic excitation is generally provided by a shaker installed on
the roof or foundation of a structure. The first field investigations
of foundation impedance provided results over a limited range
of frequencies (Lin and Jennings 1984; Luco et al. 1988; Wong
et al. 1988) or for small structures representative of strong motion
instrument huts (Crouse et al. 1990). More recently, de Barros and
Luco (1995) tested the relatively large model structure of a nuclear
reactor and provided impedance ordinates over a relatively wide
frequency range (∼4–20 Hz). Fig. 2 shows impedance ordinates
evaluated by de Barros and Luco; the results, which are shown
in nonnormalized form because of the uncertain shear modulus
of the foundation soils, illustrate the noisy character of the data,
especially at frequencies under 4 or greater than 14 Hz. Also shown
in Fig. 2 are three model predictions for stiffness and damping,
which result from uncertainty in the appropriate Vs value to use
with numerical solutions.

Laboratory-scale investigations of foundation-soil interaction
were also performed (Richart and Whitman 1967; Dobry et al.
1986; Nii 1987; Gazetas and Stokoe 1991; Gadre and Dobry 1998;
Gajan and Kutter 2008). These tests provide valuable insights,
especially under conditions involving highly nonlinear soil behav-
ior. However, laboratory tests are limited in their ability to repro-
duce certain field conditions (Novak 1987). For example, the finite
size of the laboratory test container precludes radiation damping
of waves with quarter-wavelengths on the order of the container
dimension [as reported by Dobry et al. 1986, Fig. 6(a)]. For this
reason we emphasize field testing, which involves realistic boun-
dary conditions essential for model calibration.

Two practical difficulties associated with field testing for imped-
ance ordinates and comparison to model predictions have been
encountered in previous work. First, limited resolution of the data
acquisition system with respect to analog-to-digital signal conver-
sion and time-stamping contribute significant noise to the results.
Most previous studies have not formally evaluated noise effects,
which can lead to spurious results (e.g., impedance ordinates in
Fig. 2 for frequencies outside the 4–14 Hz range). A more complete

Fig. 1. (a) Geometry of rectangular foundation used in impedance models; (b) and (c) dynamic modifiers for impedance functions of square founda-
tion [adapted from Pais and Kausel (1988) and Vrettos (1999)]; the Vrettos solutions are for a shear modulus profile that doubles from depth zero to
depth infinity
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discussion of these problems is presented in Stewart et al. (2005).
Second, shear wave velocity profiles have generally been estab-
lished with downhole or suspension logging methods in the
free-field. This presents two problems. First, those geophysical
methods have limited resolution very near the ground surface
(e.g., Andrus et al. 2004). Because the soil materials immediately
below the foundation exert the greatest influence on foundation
stiffness, this introduces uncertainty to the selection of a Vs value
for use with numerical solutions. Second, seismic velocities mea-
sured in the free-field neglect the effect of confinement provided by
the weight of the structure.

The available inventory of test data on impedance ordinates is
limited and does not always favorably compare to numerical mod-
els. Given the increasingly common use of foundation modeling
in performance-based seismic design (ASCE 2006), the lack of
data against which to verify numerical model predictions is a
concern. This paper presents (1) a methodology for data interpre-
tation to evaluate foundation impedance functions; and (2) a data
set obtained by using high-fidelity modern sensors and data acquis-
ition equipment, which provides relatively high signal-to-noise
ratios and robust time-stamping. The effects of noise on the results
are evaluated to establish the usable frequency range of the exper-
imental ordinates. Moreover, velocity profiling is configured to
examine near-surface and deeper features so numerical models
are exercised with greater confidence.

Site and Structure Description

The model test structure is located in a sedimentary basin instru-
mented as part of the Garner Valley Differential Array (GVDA),
which in turn is part of the George E. Brown Jr. Network for Earth-
quake Engineering Simulation (NEES). As shown in Fig. 3, soil
conditions consist principally of silty sand materials extending
to a depth of 18 m, which are underlain by decomposed granite.
Relatively intact crystalline bedrock occurs at a depth of 88 m.
The groundwater table is at the surface in rainy seasons and drops
to approximately 3 m in dry seasons. Geophysical tests [suspension
logging and spectral analysis of surface waves (SASW)] were car-
ried out to measure S-wave velocities with results shown in Fig. 3.
Three SASW arrays were positioned on the ground immediately
adjacent to the structure (Stokoe et al. 2004). Two dispersion curves

were obtained with frequency-independent phase velocities over a
wavelength range of 0.6–6.0 m. Those phase velocities have a
central value (median) of 198 m=s and a relatively narrow range
of � approximately 15 m=s. The third dispersion curve has more
scatter and a lower median phase velocity for wavelengths under
4 m of approximately 170 m=s. Averaging the three medians and
correcting phase velocities to shear wave velocities provides an
estimated median of Vsm ¼ 198 m=s. The range for subsequent
analysis is taken as 183–213 m=s, which is somewhat narrower
than Vsm� the standard deviation of converted phase velocities
(σv) owing to the wide scatter in the third array. Additional
free-field measurements at the site indicated velocities as low as
120–170 m=s in the upper 6 m—the relatively fast velocities near
the structure are likely attributable, at least in part, to the overbur-
den provided by the test structure. The mass density is taken as
1;800 kg=m3 and Poisson’s ratio as 0.35.

The test structure was constructed specifically to facilitate soil-
structure interaction (SSI) experiments and hence is referred to as
the NEES soil-foundation-structure interaction (SFSI) test struc-
ture. As shown in Fig. 4, the structure consists of a simple steel
frame supporting a roof slab 40.6 cm in thickness. The foundation
consists of a nonembedded reinforced concrete slab 50.8 cm thick.
The height of the structure from base of the foundation to the top of
roof slab is 4.56 m. The plan dimensions of the foundation and roof
slabs are 4:06 m × 4:06 m. Reconfigurable bracings are inserted
into the structure to modify its vibration characteristics. The mass
of the foundation and roof slab are 20.5 and 16.4 Mg, respectively,
on the basis of an assumed concrete unit weight of 23:9 kN=m3

(152 lb=ft3). The masses of the intermediate structural elements
are 1.7 and 2.0 Mg for the unbraced and braced configurations,
respectively. The SFSI test structure is instrumented with triaxial
and uniaxial accelerometers, shown in Fig. 4, and other sensors
not used in the present research but described by Youd et al.
(2004). Signals are digitally recorded at 24-bit resolution and a
200 Hz sample rate. Forced vibration is applied with a uniaxial
shaker mounted on the bottom of the top slab (Acoustic Power Sys-
tems’ Model 113 shaker with dynamic mass ¼ 35:65 kg).

In addition to forced vibration tests, many small earthquakes
have been recorded at the Garner Valley test site. Tileylioglu
(2008) used both data sets to identify the flexible and fixed-base
fundamental mode frequencies listed in Table 1. The fixed-base
properties represent the structure alone (no effect of foundation

Fig. 3. Soil profile with shear wave velocities obtained from suspen-
sion logging and SASW tests [J. Steidl, personal communication 2009;
SASW data from Stokoe et al. (2004)]

Fig. 2. Translational (top) and rotational (bottom) impedance values
for the model of a nuclear containment structure at Hualien, Taiwan
(adapted from de Barros and Luco 1995)
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compliance or damping) whereas the flexible-base properties
represent the complete system.

Derivation of Impedance Functions from Forced
Vibration Tests

In this section, equations are derived for the calculation of imped-
ance functions from acceleration recordings at the roof (translation)
and base-level (translation, rotation from two vertical instruments)
of the structural system. The model representing the soil-
foundation-structure system is depicted in Fig. 5, and has one
above-ground structural degree of freedom in translation. The rota-
tional degree of freedom of the top slab is neglected by this pro-
cedure, but has a negligible effect in the frequency range used in the
tests (5–15 Hz). The compliance of the soil is modeled through
springs that enable foundation translation (uf ) and rotation (θf ) rel-
ative to the free-field. Deformation of the structural degree of free-
dom relative to the translated and rotated foundation is denoted us.

The equations of motion for the model in Fig. 5 subjected to
forced vibration can be written as follows:

M €UþC _UþKU ¼ F ð5Þ
where U = displacements and rotations of each degree of freedom
as

U ¼ ½ uf θf us �T ð6Þ
Time derivatives of U are indicated with dots over the vector. Terms
M, C, and K = mass, damping, and stiffness matrices, respectively,
and are expressed as (adapted from Crouse and McGuire 2001):

M ¼
mf þ ms mf hf þ msh ms

mf hf þ msh If þ mf h2f þ msh2 msh
ms msh ms

0
@

1
A ð7a Þ

K ¼
kx kyx 0
kxy kyy 0
0 0 ks

0
@

1
A ð7b Þ

C ¼
cx cyx 0
cxy cyy 0
0 0 cs

0
@

1
A ð7c Þ

The use of strain-invariant stiffness and damping terms assumes
an elastic response. Also, horizontal excitation is assumed in the
x direction, meaning that θ = rotation in the x� z plane (rotational
stiffness and damping terms carry the yy subscript). The mass,
height, and moment of inertia terms in Eq. (7a) are defined in Fig. 5;
the diagonal foundation stiffness and damping terms in Eqs. (7b)
and (7c) are defined in Eqs. (2), (3a), and (3b); the off-diagonal
foundation stiffness and damping terms (kyx, cyx) in Eqs. (7b)
and (7c) = coupling terms in the impedance function and are often
approximated as zero for surface foundations; and the structural
stiffness and viscous damping = ks and cs, respectively. Finally,
F = a force vector expressed as (Crouse et al. 1984):

F ¼ ½Fs hFs Fs �T ð8Þ

Equations of motion at each degree of freedom are obtained by
entering the terms from Eqs. (6)–(8) into Eq. (5) and completing the

Fig. 4. Plan and elevation views of the SFSI test structure at GVDA showing locations of instrumentation and shaker

Table 1. Fixed and Flexible-Base Fundamental Mode Frequencies for the GVDA Model Test Structure

Excitation source Structural configuration Fixed-base parameters Flexible-base parameters

f (Hz) ζ (%) f (Hz) ζ (%)

Earthquake ML ¼ 4:2 Unbraced 6.70 0.51 5.82 1.25

Earthquake Mw ¼ 5:4 Unbraced 6.70 0.90 5.81 4.11

Forced Unbraced 6.56 1.48 6.04 1.68

Forced Braced 12.76 9.33 9.88 4.60
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matrix multiplication. Excluding the coupled foundation stiffness
and damping terms, the resulting equations are

Foundation translation∶ msð€uf þ h€θf þ €usÞ þ mf ð€uf þ hf€θf Þ
þ cx _uf þ kxuf ¼ Fs ð9Þ

Foundation rotation∶ mshð€uf þ h€θf þ €usÞ þ If€θf
þ mf hf ð€uf þ hf€θf Þ þ cyy _θf þ kyyθf ¼ hFs ð10Þ

Structure translation∶ msð€uf þ h€θf þ €usÞ þ cs _us þ ksus ¼ Fs

ð11Þ
In Eqs. (9)–(11), quantity ð€uf þ h€θf þ €usÞ = measured roof accel-
eration; €θf is calculated from vertical sensors on the foun-
dation (difference of vertical accelerations divided by horizontal
separation distance); and the top-of-foundation acceleration =
ð€uf þ 2hf€θf Þ. Hence, all the motions listed in Eqs. (9)–(11) are
evaluated from the instrumentation depicted in Fig. 4. Applying
Fourier transforms and writing Eqs. (9) and (10) in displacements
yields:

� ω2msð�uf þ h�θf þ �usÞ � ω2mf ð�uf þ hf�θf Þ þ iωcx�uf þ kx�uf ¼ �Fs

ð12Þ

� ω2mshð�uf þ h�θf þ �usÞ � ω2If�θf � ω2mf hf ð�uf þ hf�θf Þ
þ iωcyy�θf þ kyy�θf ¼ h�Fs ð13Þ

where the overbar indicates the variable in the frequency domain
(obtained through Fourier transformation). Rearranging the pre-
vious equations yields the following:

� ω2msð�uf þ h�θf þ �usÞ � ω2mf ð�uf þ hf�θf Þ þ ð�kxÞ�uf ¼ �Fs ð14Þ

� ω2mshð�uf þ h�θf þ �usÞ � ω2If�θf � ω2mf hf ð�uf þ hf�θf Þ
þ ð�kyyÞ�θf ¼ h�Fs ð15Þ

where the terms �kxand �kyy = complex-valued translational and rota-
tional foundation stiffnesses, respectively, as defined in Eq. (1a).
Hence, the translational and rotational stiffness and damping can
be evaluated in the frequency domain with the following equations:

�kx ¼
�Fs þ ω2msð�uf þ h�θf þ �usÞ þ ω2mf ð�uf þ hf�θf Þ

�uf
ð16Þ

�kyy ¼
h�Fs þ ω2mshð�uf þ h�θf þ �usÞ þ ω2If�θf þ ω2mf hf ð�uf þ hf�θf Þ

�θf
ð17Þ

Identical expressions for shaking in the y direction are obtained if
the horizontal translations in Eqs. (16) and (17) are measured in the
y direction and the foundation rotation is measured in the y� z
plane [denoted xx in Fig. 1(a)].

In Eq. (16), the complex translational stiffness term is equal to
the ratio of the base shear to the foundation displacement. The com-
plex rotational stiffness term in Eq. (17) is equal to the ratio of base
moment to the foundation rotation. Through Eq. (1a), the real parts
of these terms give the dynamic stiffness coefficient; the complex
parts include the corresponding damping coefficient.

Eqs. (16) and (17) are validated by generating simulated data
with a computational model of a structure similar to the one in Fig. 5
with a specified impedance function (including coupling terms).
The normalized fundamental mode frequency for the system is
a0 ¼ 0:53, which approximately matches the flexible-base fre-
quency of the Garner Valley test structure. The data are generated
by exciting the model with a broadband excitation force. Details of
the forcing function are unimportant because the model of the
structure-soil system is elastic. Computed data consisting of roof
and foundation translational displacements and foundation rotation
were then used to invert the foundation impedance with Eqs. (16)
and (17). Fig. S1 shows the impedance ordinates used in the sim-
ulations and those returned by the inversion for this single-degree-
of-freedom (SDOF) structure. Errors are small (less than 9%) and
result from exclusion of the coupling impedance terms in the der-
ivation of Eqs. (16) and (17). If coupling terms are excluded from
the computational model producing the simulated data, then the
match of impedance terms is essentially perfect.

A second set of simulations were performed for a two-degree-
of-freedom structural system with intermediate-level mass of
approximately 10% of the top mass. The system has an identical
first-mode frequency to that considered previously (a0 ¼ 0:53) and
a second-mode normalized frequency of a0 ¼ 4:5. Coupling
impedance terms are not used in the simulations, so differences
between assumed and inverted impedance ordinates result solely
from higher mode effects. The inversion of foundation impedance
is performed by using Eqs. (16) and (17), which neglects the inertia
of the intermediate-level mass. The purpose of this simulation is to
evaluate errors associated with the use of the SDOF inversion tech-
nique for a structure with a higher mode. As shown in Fig. S1, those
results demonstrate no significant errors at low frequencies. How-
ever, errors occur at higher frequencies as the second mode is
approached. This suggests that inverted impedance ordinates could
be erroneous near higher mode frequencies.

Field Testing Program

Testing Overview

Two types of tests were carried out on the structure: fast sweep tests
for the braced and unbraced configurations and harmonic tests for
the braced configuration. In the fast sweep tests, the frequency
of the shaker force was lowered gradually from 15 to 5 Hz in 60 s.
In the harmonic tests, the frequency of the shaker force was
held constant until the system reached steady state and for 30
cycles thereafter. The excitation frequency was then increased

Fig. 5. Model for soil, foundation, and single-degree-of-freedom
structure used to derive impedance functions
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by increments to the next level and the process was repeated. This
type of test was also carried out in the frequency range of 5–15 Hz.
The braced and unbraced experiments reported in this paper were
both conducted on November 4, 2006, so that environmental con-
ditions for the two tests were effectively identical.

Figs. 6(a) and 6(b) show Fourier amplitude spectra of the roof
and base translation. The motions imposed during the tests are
small—the peak displacement and acceleration of the roof are
0.005 cm and 0:009 g, respectively, and 0.0003 cm and 0:0006 g
for the base. Accordingly, the structural and soil response
were expected to remain in the elastic range. Also shown in
Figs. 6(a) and 6(b) is the Fourier amplitude of noise from a hori-
zontal instrument at the foundation level, which was recorded in
a time interval with no external excitation. The roof translation
is comfortably above the noise level across the full range of tested
frequencies. The foundation translation approaches the noise level
at approximately 14 and 9 Hz in the braced and unbraced struc-
tures, respectively. Fig. 6(c) shows Fourier spectra of rotation θ
for tests on the braced and unbraced structure and for zero excita-
tion (marked as “noise”). Like the translational motions, the braced
signal is above the noise level for nearly the full range of frequen-
cies, and the unbraced signal is closer to, but generally above, the
noise level for frequencies below 10 Hz.

Analysis of Foundation Impedance from Test Data

Eqs. (16) and (17) are examples of transfer functions, which are
ratios of time series in the frequency domain. Numerator terms
represent base shear [Eq. (16)] and moment [Eq. (17)], which
are derived from accelerations recorded in the time domain and
then converted to the frequency domain by using the fast Fourier
transformation (FFT). The FFT of a recorded acceleration is �ω2�u,
in which �u is the corresponding displacement. Denominators in
Eqs. (16) and (17) are displacement and rotation terms obtained
from the Fourier transformation of recorded acceleration divided
by �ω2.

Fig. S2 in the electronic supplement plots loops of shear versus
base displacement and moment versus base rotation for cycles of
the braced structure at low frequencies (near 6 Hz), midfrequencies
(near 10 Hz), and high frequencies (near 14 Hz). Similar plots for
the unbraced structure are provided at 6, 7.5, and 9 Hz. Important
features in these plots include (1) the secant moduli of the
moment-rotation loops decrease markedly with frequency, indicat-
ing frequency dependence of the foundation rocking stiffness
terms (kyy), whereas the shear-sliding stiffnesses (kx) are nearly
independent of frequency; (2) the “fatness” of the loops is greater
for shear-sliding than for moment-rotation, demonstrating the

greater effectiveness of the shear-sliding deformation mode in
foundation-soil energy dissipation; and (3) the loop fatness
increases with frequency, demonstrating the contributions of
radiation damping, which scales with frequency, to the overall
foundation-soil damping.

The calculation of the transfer functions in Eqs. (16) and (17) is
complicated by denominator terms that can be small at some
frequencies owing to noise and other effects, causing the ratio
to become very large. Accordingly, unsmoothed Fourier amplitude
or phase spectra can have large frequency-to-frequency variability.
Fig. 7(a) shows an example of unsmoothed transfer functions
calculated by using Eq. (16); the result shown is the real part of
the transfer function corresponding to the frequency-dependent
foundation stiffness kx, calculated by using signals recorded from
the unbraced and braced structures excited in the fast sweep mode.
Note the jagged appearance of the functions, which can complicate
interpretation.

Mikami et al. (2008) review signal processing procedures
(smoothing and windowing), which are designed to smooth transfer
functions so that physically meaningful attributes are more readily
discerned. Windowing involves the selection of the time segment
considered in the analysis, which can be nontrivial for earthquake
accelerograms. For the present application involving a controlled
source, the time window is simply the untapered interval during
which forced vibration is applied. Mikami et al. (2008) describe

Fig. 6. (a) Fourier spectra of recorded horizontal displacements from fast sweep tests of braced structure; (b) same as (a), but for unbraced structure;
(c) Fourier spectra of base rotations for braced and unbraced structure

Fig. 7. (a) Example of smoothed and unsmoothed impedance results
for translational foundation stiffness of braced and unbraced structures;
(b) coherence of smoothed translational impedance estimates showing
effects of noise
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time and frequency domain methods of smoothing and find little
practical difference for a common level of smoothing as repre-
sented by an effective frequency bandwidth (a larger bandwidth
implies greater smoothing). We employ frequency domain smooth-
ing of power spectral density functions. Consider an arbitrary time
series aðtÞ sampled at Nt time steps having Fourier transform �aðωÞ.
The smoothed autopower spectral density function is calculated as
(Abrahamson 1992):

SaaðωÞ ¼
Xn
j¼�n

pj�aðωjÞ�aðωjÞ� ð18Þ

where 2nþ 1 = number of discrete frequencies smoothed;
ωj ¼ ωþ 2πj=Nt; pj = weights used in the frequency smoothing;
and the asterisk denotes the complex conjugate. Smoothing is ap-
plied with an 11-point Hamming window (n ¼ 5), which provides
an effective frequency bandwidth of 0.13 Hz for the 60-s duration
signals used to calculate the Fourier transforms (Mikami et al.
2008; Abrahamson 1992). A similar autopower spectral density
function can be derived for time series bðtÞ. The complex-valued
cross power spectral density function is calculated as

SabðωÞ ¼
Xn
j¼�n

pj�aðωjÞ�bðωjÞ� ð19Þ

Two estimates of complex-valued transfer functions [e.g., the
quantities in Eqs. (16) and (17)] are possible from these power
spectral density functions (Pandit 1991):

H1ðωÞ ¼ SabðωÞ=SaaðωÞ ð20Þ

H2ðωÞ ¼ SbbðωÞ=SbaðωÞ ð21Þ
The H1 and H2 estimates of the transfer function diverge in the
presence of noise. Along with the unsmoothed transfer function
described previously, Fig. 7(a) also shows the smoothed H1ðωÞ
and H2ðωÞ estimates of the foundation stiffness kx. The smoothed
functions follow the same trend as the unsmoothed function but
have a less jagged appearance.

Another valuable attribute of smoothing is that it allows the
computation of coherence, which is the ratio of the two transfer
function estimates (Pandit 1991):

γ2ðωÞ ¼ H1ðωÞ
H2ðωÞ

¼ jSabðωÞj2
SaaðωÞSbbðωÞ

ð22Þ

Coherence is theoretically unity in the absence of noise and drops
below 1 for noisy signals, and hence, is useful for identifying the
usable frequency range of a computed transfer function. Coherence
values associated with the previous estimates of kx are shown in
Fig. 7(b). A comparison of the coherence function to the signal
amplitudes from Figs. 6(a) and 6(b) shows that when coherence
is low, it is because the amplitude of the denominator signal in
Eq. (16) is approaching that of noise (i.e., signals recorded with
no forced vibration). Transfer function ordinates associated with
coherence < 0:8 were considered unreliable in some past work
involving seismic signals (Kim and Stewart 2003; Mikami et al.
2008), although that threshold is somewhat arbitrary.

Considering both the coherence and noise spectra, the transla-
tional impedance estimates for the unbraced structure may not
be reliable for frequencies higher than approximately 9 Hz. For
the braced structure, the translational impedance should be reliable
for frequencies higher than 5.5 Hz owing to high coherence and
signals well above noise because of strong SSI. Similar interpreta-
tions of the rotational impedance terms are described subsequently.

Fig. 8 shows foundation impedance ordinates for translation
and rocking calculated by using Eqs. (16) and (17) with transfer
function estimate H1 [Eq. (20)]. The stiffness ordinates ðkx; kyyÞ
represent the real part of the complex-valued stiffness, whereas
the viscous dashpots ðcx; cyyÞ are calculated from the imaginary part
[through Eq. (1a)]. Three sets of results are shown for each stiffness
and dashpot coefficient. Two are smoothed impedance ordinates
calculated from time signals recorded with the braced and unbraced
structure configurations. The third set of results is from harmonic
tests, which were performed for the braced structure only. Those
results are shown at discrete frequencies and are calculated directly
from Eqs. (16) and (17) without the need for Fourier transformation
or smoothing (the displacements and rotations are taken directly
from the measured steady-state response). Results similar to those
in this paper were obtained from multiple tests at various times.

Calculated impedance ordinates from the braced structure are
consistent for the fast sweep and harmonic tests. Coherence values
are high over the 5.5–15 Hz frequency range, suggesting minimal
noise effects on the results.

Stiffness and damping for the unbraced structure are generally
similar to those for the braced structure, but have more frequency-
to-frequency variability as a result of reduced resolution of the
foundation displacement and rotation signals. As previously stated,
translational impedance ordinates for the unbraced structure are
considered unreliable for frequencies greater than 9 Hz owing to
excessive noise. The rotational results are considered reliable below
14 Hz because of high coherence and foundation rotations gener-
ally above the noise level. Interestingly, the unbraced rotational
stiffness is less than the braced rotational stiffness by approxi-
mately 10% for frequencies under 8 Hz. This difference falls within
the experimental error implicit to this method of field testing.

Fig. 8. Experimental foundation stiffness and damping values for
horizontal translation and rocking obtained from testing of the Garner
Valley test structure with and without bracing; and coherence estimates
for the impedance ordinates
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Impedance from Theoretical Solutions

Two principal aspects of theoretical models for foundation stiffness
can be checked against the experimental data, the low-frequency
(nearly static) stiffness and the variation of stiffness with frequency.
Fig. 1(b) demonstrates that the variation of foundation stiffness
with normalized frequency is similar for footings on a half-space
and a depth-variable stiffness profile. Hence, because details of the
soil layering are apparently of second-order importance, the critical
question in the development of a theoretical prediction for compari-
son with the test results is the appropriate half-space shear wave
velocity for calculations of static stiffnesses for horizontal transla-
tion and rocking. In most applications, Vs profiles are evaluated
away from foundations (i.e., in the free-field) and show increases
of stiffness with depth. To evaluate a single effective Vs value for
use in computations, the user must (1) correct free-field Vs values to
account for the increased overburden pressures associated with
structure weight; and (2) select an appropriate depth range to aver-
age overburden-corrected velocities. The first effect is not consid-
ered in typical practice [e.g., there are no provisions for this in
BSSC (2009)], but it was recognized by Dobry et al. (1986) and
Gazetas and Stokoe (1991), who matched theoretical system
frequencies to test data by using half-space velocities higher than
free-field measured values. The second effect is considered in prac-
tice, as described subsequently.

Overburden corrections are not needed for the present applica-
tion because the SASW results in Fig. 3 are based on arrays
immediately adjacent to the foundation; hence, the measured veloc-
ities account for confinement provided by the structure weight. For
more general applications in which velocities are measured in the
free-field, we describe the process by which the overburden effect
can be included in the analysis. Small-strain shear modulus (G) is
known to increase with mean effective confining stress (σ0

m) as
follows:

G ¼ G1

�
σ0
m

pa

�
n

ð23Þ

where G1 = shear modulus for σ0
m ¼ 101:3 kPa and n varies from

approximately 0.5 for granular soils (Hardin and Black 1968;
Marcuson and Wahls 1972) to 1.0 for cohesive soils with plasticity
index PI > ∼6:5 (Yamada et al. 2008). Recognizing that Vs
is proportional to the square root of shear modulus, free-field
measurements of shear wave velocity are corrected to account
for overburden effects from the structure as follows:

Vs ≈ Vs0

�
σ0
v0 þΔσv

σ0
v0

�
n=2

ð24Þ

where Vs = overburden-corrected shear wave velocity for a particu-
lar depth z; Vs0 = shear wave velocity measured in the free-field;
σ0
v0 = effective stress from soil self weight at depth z; and Δσv =

increment of vertical stress at depth z from the structural weight,
which can be computed by using classical stress distribution theory
(e.g., Fadum 1948). The overburden correction in Eq. (24) is typ-
ically significant only at shallow depths below the foundation bear-
ing level (approximately 50–100% of the foundation dimension).

Stewart et al. (2003) investigated the depth interval across which
to compute an effective average profile velocity by matching half-
space static stiffnesses to those of nonuniform profiles computed
with the solutions of Wong and Luco (1985). The resulting recom-
mendations, which are also given in BSSC (2009), compute effec-
tive profile velocity as the ratio of depth interval (zp) to shear wave
travel time through the depth interval, with the depth interval taken
from the base of the footing to the following depths:

Horizontal translation∶ zp ¼ 0:75
ffiffiffiffiffiffiffiffiffiffi
Af =π

q
ð25Þ

Rocking∶ zp ¼ 0:75
ffiffiffiffiffiffiffiffiffiffiffiffi
4If =π

4

q
ð26Þ

where Af = foundation area; and If = foundation moment of inertia.
For the present structure, Zp ¼ 1:7 m and is measured from the
ground surface because the foundation is not embedded. The Vs
profile in Fig. 3 is depth-invariant in the upper 3 m, therefore,
no averaging is needed and the profile velocity is assumed to be the
values from the figure (the best estimate of Vsm ¼ 198 m=s with a
range of 183–213 m=s). Additional soil parameters used for
the impedance calculation are mass density ρ ¼ 1;800 kg=m3 and
Poisson’s ratio ν ¼ 0:35. Small-strain soil damping (Dmin) is esti-
mated at 2% from the empirical model of Darendeli (2001).

By using the previous soil parameters, impedance ordinates
were calculated for horizontal translation and rocking using equa-
tions provided by Pais and Kausel (1988), which apply for a uni-
form half-space soil medium and rigid foundation. These model
predictions are compared with experimental results in Fig. 9.
The normalization of horizontal and rocking impedance in Fig. 9
is by GmB and GmB3, respectively, where Gm ¼ ρV2

sm; B ¼ 2m
(foundation half-width); and Vsm ¼ 198 m=s. Predictions calcu-
lated for the limits of the velocity range (183 and 213 m=s) are
normalized with Gm to show the effect of velocity uncertainty. Fre-
quency is normalized to a0 [Eq. (4)], by using the velocity appro-
priate to each prediction [Vsm is used in Eq. (4) for experimental
data]. In Fig. 9, experimental results are shown in the frequency
range over which they are judged to be reliable on the basis of high
coherence and minimal influence of noise, as described previously.

Considering first the stiffness results, predictions utilizing the
best estimate velocity overestimate the experimental results by
approximately 10% for translation and 15% for rotation. Predic-
tions made with the reduced velocity (lower end of the range from
Fig. 3) are consistent with experimental results. The stiffness decay

Fig. 9. Normalized impedance values from data compared with theo-
retical predictions for the Garner Valley site
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with frequency is consistent between experimental results and
predictions.

The normalized damping results (βj terms) plotted in Fig. 9
represent half the ratio of the complex to the real part of the foun-
dation impedance [Eq. (2)]. The results demonstrate finite damping
at low frequencies that is slightly smaller than themodel predictions.
This suggests that the small-strain damping estimate of Dmin ¼ 2%
from Darendeli (2001) may be too large. Both the translational and
rotational damping ordinates increase with frequency, which dem-
onstrates the importance of radiation damping. Fig. 9 shows that
βx > βyy, which confirms model predictions that radiation damping
of square foundations in translation is a more significant energy dis-
sipation mechanism than radiation damping in rotation. However,
the model predictions for radiation damping are too high relative
to data for translation and slightly too low for rotation.

Additional impedance estimates were computed by A. Mikami
(personal communication, 2010) with the computer program
SASSI (Ostadan 2006) with a finite concrete modulus (taken as
22 GPa) and a uniform half-space (Vs ¼ 198 m=s). In the SASSI
analysis, the first six soil layers are 0.25 m thick, followed by a
0.5-m layer and then 1.0-m layers extending to a half-space at
7 m of depth. Foundation loading was applied at the four corners
of the 4-m-square foundation. Because the foundation is flexible in
the SASSI analysis, the foundation displacements (and hence, the
impedance) are location-dependent. Vertical displacements were
taken from the corners (where the loads are applied) and horizontal
displacements from the center of the foundation, which match the
sensor locations used to calculate the experimental impedance (as
shown in Fig. 4). Fig. 9 demonstrates that results from the two
numerical models are nearly identical, indicating that the
assumption of foundation rigidity in the Pais and Kausel (1988)
model is reasonable for the present application.

Discussion and Conclusions

We present procedures to compute foundation stiffness and damp-
ing (impedance coefficients) for horizontal translational and rota-
tional modes of foundation vibration from data recovered from
forced vibration tests conducted on a soil-foundation-structure sys-
tem. Implementation of the procedures requires measurements of
horizontal motions at the roof and foundation level of the structure,
vertical foundation motions to derive rotations, shaker forces, and
system masses. The procedures are applied to data from the large-
scale NEES SFSI field test structure in Garner Valley, California,
that was subjected to fast sweep and harmonic excitation over a
frequency range of 5–15 Hz. Applied force levels were small,
so the structure-soil system was expected to have remained in
the elastic range. The structure was tested both with and without
bracing. The addition of bracing significantly increases the stiffness
of the system and the importance of SFSI in the system response.

The identified impedance ordinates are frequency-dependent
and complex-valued with real parts representing stiffness and com-
plex parts damping. The stiffness terms demonstrate the decay of
rotational stiffness with frequency and a relative lack of decay for
translational stiffness. The damping terms show more pronounced
energy dissipation for translational than rotational vibration modes,
and increases of damping with frequency illustrate the importance
of radiation damping for this foundation-soil system. Many of
these features were previously anticipated in theoretical models but
are now observed experimentally. The experimental impedance
ordinates are in reasonable accord with predictions of theoretical
models in which the soil medium is represented by a half-space,
provided that consideration is given to the effects of structural

weight on the soils’ shear modulus and small-strain soil hysteretic
damping. Stiffness terms are best matched by using a velocity
slightly lower than the median from on-site measurements. Damp-
ing terms are modestly overpredicted for translation and underpre-
dicted for rotation.
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