Introduction of SASW Technique and Its Data Reduction Procedures

Prepared by

Kenneth H. Stokoe II
Brady R. Cox
Yin-Cheng Lin

February 27, 2006
Figure 1 Illustration of Surface Waves with Different Wavelengths Sampling Different Materials in a Layered System which Results in Dispersion in Wave Velocities

Vertically Oriented Source (Impact, Random, or Steady-State Vibration)

Multi-Layered Solid

Figure 2 Schematic Diagram of the Generalized Equipment Arrangement Used in Spectral-Analysis-of-Surface-Waves (SASW) Testing
Figure 3 Common-Middle-Receiver Geometry Used in SASW Testing at Hanford Sites

Figure 4 Photograph of 1-Hz Geophone Semi-embedded in the Ground and the Pre-test Check for Plumbness
Figure 5 Photograph of Mr. Min Jae Jung Using the Sledge Hammer Source at Hanford Site H9

Figure 6 Photograph of Liquidator Operating in Stepped-Sine Mode at the Hanford Site H10
Figure 7 Photograph of Mr. Brady Cox Operating the Data Recording Equipment
Spectral Calculations

The dynamic signal analyzer was used to measure time-domain records \(x(t)\) and \(y(t)\) from the two receivers at each receiver spacing. These time records were then transformed into the frequency domain \((X(f)\) and \(Y(f)\)) and used to calculate the power spectra \((G_{XX}\) and \(G_{YY}\)), the cross spectrum \((G_{XY})\) and the coherence function \((\gamma^2)\). Expressions for these quantities are:

\[
G_{XX} = X^*(f) \cdot X(f) \\
G_{YY} = Y^*(f) \cdot Y(f) \\
G_{XY} = X^*(f) \cdot Y(f)
\]

\[
\phi(f) = \arctan \left(\frac{\text{Im}(G_{XY})}{\text{Re}(G_{XY})}\right)
\]

\[
\gamma^2(f) = \frac{|G_{XY}(f)|^2}{G_{XX}(f) \cdot G_{YY}(f)}
\]

where \(G_{XY}(f) = \frac{1}{N} \sum_{i=1}^{N} X^*(f) \cdot Y_i(f)\) is the cross power spectrum from coherent signal averaging, (*) represents the complex conjugate of the quantity, Im signifies the imaginary part of the expression, Re signifies the real part of the expression, and \(\phi(f)\) is the relative phase between two receivers of the cross power spectrum.

The relative phase of the cross spectrum \(\phi(f)\) is the key spectral quantity in SASW testing. The coherence function of averaged measurements is also important as an indicator of the quality of the measurement over the monitored frequency range. Low values of coherence indicate a possible decrease in data quality. The spectral functions were determined one frequency at a time in a stepped-sine fashion. The number of averages and integration time was adjusted in the field to control how long the source remained at each frequency. Typically 3 to 5 averages were used at each frequency in the determination of the spectral functions when Liquidator was used as the source. Five averages were typically used when the impact source (sledge hammer) was employed. The relative phase of the cross spectrum, simply called the phase hereafter, represents the phase difference of the motion at the two receivers. One set of spectral functions was measured for each receiver spacing and testing direction.

As an example, the wrapped phase spectrum and coherence function from one receiver spacing are shown in Figure 11. These data were collected with the 600-ft receiver spacing recorded at Site H1. Construction of individual dispersion curves from each receiver pair and combining them into composite dispersion curves are discussed below.
Figure 8 Phase of the Cross Power Spectrum and Coherence Function Measured at Site H1 with a 600-ft Receiver Spacing
Figure 9 Phase of the Cross Power Spectrum and Coherence Function Measured at Site H1 with 600-ft Receiver Spacing Showing the Masking Applied to the Near-Field Region
Figure 10 Individual Dispersion Curve Created from the Unwrapped Phase Record in Figure 12a Measured with a 600-ft Receiver Spacing at Site H1

\[V_R = f \cdot \frac{360}{\phi} \cdot d \]

Receiver Spacings = 5, 10, 20, 25, 40, 50, 150, 300, 450, and 600 ft.

Figure 11 Composite Experimental Dispersion Curve Created from Phase Measurements Performed at all Receiver Spacings at Site H1
Figure 12 Window of Parameters Used to Generate SASW Theoretical Dispersion Curve
Figure 13 Comparison of the Fit of the Theoretical Dispersion Curve to the Experimental Dispersion Curve at Site H1

Figure 14 Final Shear Wave Velocity Profile Determined at Site H1